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Measurement of thin-layer surface stresses 
by indentation fracture 
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A model is developed for evaluating stresses in the surfaces of brittle materials from 
changes in indentation crack dimensions. The underlying basis of the model is a stress 
intensity formulation incorporating the solution for a penny-like crack system subjected 
to a constant stress over a relatively thin surface layer. Results from a previous study of 
surface damage in proton-irradiated glass are used to illustrate the scope of the method. 
The indentation fracture analysis also provides some fresh insight into the susceptibility 
of brittle surfaces to spontaneous cracking. Implications of the study concerning the 
potential effect of surface stresses on mechanical properties, such as strength, erosion and 
wear, are briefly discussed. 

1. Introduction 
Surfaces of  solids can exist in a state of  residual 
stress. There is a diversity of  ways in which surface 
stresses may arise; mechanical finishing (machining, 
etc.), thermal tempering, chemical treatment, 
radiation damage. These stresses can attain unusu- 
ally high intensities, even if only over a shallow 
layer beneath the surface. Accordingly, surface 
history can be an important factor in the consider- 
ation of  mechanical properties of  materials, such 
as strength and erosion. 

It is not generally an easy matter to measure 
surface stresses. Traditional methods, e.g. X-ray 
diffraction line shifts, deflection of  thin substrates, 
optical birefringence, require a good deal of  special 
expertise and are limited in the material configur- 
ations to which they can be applied. A relatively 
new and simple approach in the case of  inherently 
brittle materials is to introduce indentation cracks 
into the test surfaces [1-3] .  The surface traces of 
the cracks extend or contract, depending on 
whether the residual stresses are tensile or com- 
pressive, so development of a stress layer may be 
followed systematically by monitoring the crack 
size. However, detailed fracture mechanics analyses 
have thus far been limited to "deep-layer" con- 
figurations, where the stresses extend to a suffi- 
cient depth below the surface that they may be 
considered as uniform over the crack area [3]. 
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Most practical cases do not conform to the spirit 
of this approximation, so the indentation tech- 
nique has been severely restricted in its appli- 
cation. 

In this work we redress this shortcoming by 
extending the fracture mechanics analysis to 
"thin-layer" stress configurations. We focus par- 
ticular attention on the case where the depth of  
the layer is small compared to that of  the crack, 
assuming once more that the stresses remain uni- 
form within this layer. However, the formalism 
used to obtain the solution for this configuration 
may be carried over to more general layer stress 
distributions. Indentation fracture data from an 
earlier study on photon-irradiated glass surfaces 
[1 ] will be used to illustrate the quantitative infor- 
mation that may be obtained from the analysis. 

2. Fracture mechanics model 
Consider the crack pattern produced by a standard 
"point"  indenter [4], e.g. Vickers, Knoop. Basi- 
cally the cracks have penny-like geometries, with 
their centres at or close to the point of  contact. 
There are two main types of  cracks: radial/median 
(hereafter referred to simply as radial), on sym- 
metry planes normal to the surface and containing 
the load axis [5, 6]; lateral, on shallow subsurface 
planes approximately normal to the load axis [7]. 
Of these two systems it is the first which is of  
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greater interest here, for the main components of  
surface stress fields are laterally directed. Thus the 
radial crack traces on the specimen surface should 
constitute a sensitive indicator of  induced stress 
levels. 

We begin by reviewing the fracture relations for 
radial cracks in the absence of  any surface stresses, 
in order to establish a reference base. It is sup- 
posed that the crack system is sufficiently well 
developed that the radial arms extend well beyond 
the hardness impression from which they emanate, 
but not too large that lateral chipping disrupts the 
pattern. Experimentally, this means operating 
within a specifiable range of  contact loads. A key 
element in the fracture evolution is the stable 
growth of  the radial segments on unloading the 
indenter, indicating that the primary crack driving 
force arises from the irreversible component of  
the elastic-plastic contact field [5]. Consequently, 
the immediate post-indentation surface radial 
configuration is subject to a residual stress inten- 
sity factor [5, 6] 

K~ = x P / c  3j~ (1) 

where P is the peak contact load, c is the charac- 
teristic crack size, and X is a dimensionless factor 
which represents the intensity of  the persistent 
field (Fig. 1). One manifestation of  this residual 
driving force is the continued crack growth 
observed well after completion of  the indentation 
cycle in non-equilibrium fracture conditions [5, 8]. 

Now suppose the radial crack system is acted 
upon by surface stresses, Fig. 1. The essence of  
our approach here is to take the fracture mech- 
anics solutions for a concentrated force acting on 
an elemental area within the crack perimeter [9] 
and to integrate this solution over the entire crack 
area. In principle, this procedure could be used to 
obtain a general stress intensity factor for any 
depth profile of  stress. Details of  such calculations 
are included in the Appendix. For simplicity, we 
restrict our present attention to the special case 
of  a stress Os distributed uniformly over a depth 
d ~ c  (thin-layer approximation). This approxi- 
mation is tantamount to regarding the stress sys- 
tem as a surface line force, Os d. The appropriate 
stress intensity factor at the specimen surface for 
this case is 

K s = 2~Os dl/2 (2) 

where q; is a crack geometry term of value about 
unity. Implicit in any such calculation of  this kind 
is the assumption that the crack remains penny- 
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Figure 1 Schematic showing mutually orthogonal radial 
crack system produced by Vickers indentation and sub- 
jected to surface stress. Cracks have penny-like geometry 
centred about central deformation zone (dark region), 
which provides residual driving force. Layer depth d over 
which stress a s acts (shaded) is assumed to be small in 
comparison with radial crack dimension c. 

like in its geometry. In reality, the opening or 
closure of  the radial arms will be accentuated in 
the vicinity of the stress layer, in which event 
Equation 2 is subject to some uncertainty. It may 
be noted that, within the bounds of  our approxi- 
mation, the stress intensity factor in Equation 2 is 
independent of  crack size. Compensatory effects 
are in evidence here; the extent of  the stress layer 
sampled by a larger crack is greater in absolute 

terms, but smaller in relative terms (i.e. in com- 
parison to the total crack area). 

Provided the surface stress layer does not alter 
the characteristics of  the elastic-plastic properties 
embodied in the X term of Equation 1, we may use 
the principle of  superposition to obtain the total 
stress intensity factor for the radial crack system. 
Hence, adding Equations 1 and 2 we have 

K = x P / e  3/2 + 2 ~ o s d  a/2 (3) 

evaluated at the specimen surface. For equilibrium 
fracture conditions the cracks extend when K 
reaches a critical value, K e (toughness). Equation 3 
may then be rewritten in the form 

x P / e  3/2 = K e -- 2 ~ % d  1/z (4) 

Note that the imposition of  the surface stress is 
equivalent to reducing or increasing the intrinsic 
resistance to fracture, depending on whether os is 
tensile or compressive, respectively. In the former 
instance there is an interesting limit to as, whereby 
the "effective toughness" on the right-hand side 
is reduced to zero; at this point the crack size 
becomes infinite, corresponding to unlimited, 
spontaneous extension of the radial cracks across 
the specimen surface. A slightly more convenient 
form for our expression may be obtained by using 
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the reference state of zero surface stress to elimin- 
ate X; thus, inserting c = Co at o s = 0 into Equation 
4, we have finally 

2~• = 1 --  (Co/e) 3/2 (5) 

Stress evaluation is thereby reduced to a measure- 
ment of  relative crack dimensions in the stressed 
and non-stressed states. 

3. Case study: proton-irradiated glass 
As an illustration of  the util i ty of the above frac- 
ture mechanics model  we consider some results 
from a study of radiation damage in soda-lime 
silicate glass [1, 10]. In this s tudy float glass sur- 
faces were bombarded with protons under an 
accelerating voltage of  480kV,  and the resulting 
stresses were evaluated using Vickers indentations. 
Exhaustive surface stress measurements had pre- 
viously been made by Eernisse on similar glass 
surfaces (fused silica) for a variety of ion sources, 
including protons, using a sensitive bar deflection 
technique [11]. Eernisse found the induced stress 
to be tensile, and to increase linearly with radi- 
ation dose up to a saturation level, beyond which 
the level tended to fall off. For high energy 
protons this saturation occurred at a dose some- 
what in excess of 10X9ionsm -2, at which the 

critical surface force was osd ~- 500 N m -] [11 ]. 
This critical force was in fact found to be the same 
for all radiation treatments studied, independent 
of ion type or energy, indicating that the satu- 
ration phenomenon reflected some property of  the 
glass surface. Eernisse was unable to identify the 
true nature of this property.  

In our experiments indentation crack size was 
monitored for doses up to 1021 p ro tonsm -2 [10]. 

A fixed load of  P =  5.9N was used for all 
tests. At this load the crack patterns were always 
well developed in the sense indicated earlier 
(Section 2). For the glass surface in the unirradi- 
ated state the surface radial crack size was Co = 
63/~m, well in excess of the penetration depth 
d = 5 / ~ m  expected for 4 8 0 k V  protons [11], in 
conformity with the thin-layer approximat ion 
embodied in Equation 2. Unfortunately,  the 
indentations were made in air so some post- 
contact crack growth must have occurred, in 
which case the c values reported here do not 
represent true equilibrium configurations. Never- 
theless, since Equation 5 is formulated in terms of 
relative crack sizes we can argue that we should 
at least be able to follow data trends. Unlike the 
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Figure 2 Radial crack size for indentat ions  (P = 5.9 N) in 
soda-lime glass as funct ion  of  p ro ton  radiation (480 kV) 
dose. Curve through data points  is fit to Equat ion 7 using 
c 0 and D e values indicated. 

dimensions of the radiat cracks, the dimensions 
of  the hardness impressions were relatively insen- 
sitive to the radiation treatment [1], suggesting 
that the residuat contact term X in Equation 3 
may indeed be regarded as an invariant quantity.  

The results of  the crack-size measurements are 
plotted as a function of  ion dose in Fig. 2. The 
data points represent means and standard devi- 
ations for at least eight indentations at each dose 
level. The initial rise of  the e values indicates 
development of a tensile stress, and the subsequent 
fall-off a saturation limit, consistent with the 
findings of Eernisse. During the course of  the 
routine crack measurements the explanation of 
this saturation became clear [10]. At doses around 
l •  -2 the glass surfaces showed 
signs of  incipient "crazing" around the inden- 
tations (where high residual contact stresses 
persist). At slightly higher doses, 2 to 3 x 1019 
protons m -2, the surfaces crazed spontaneously, 
presumably from pre-present (or perhaps even 
radiation-induced) surface "flaws" [12, 13]. An 
example of  such spontaneous cracking is shown 
in Fig. 3. The "mud-flat"  pattern closely resembles 
that found on glass surfaces after sodium exchange 
treatments [14 16]. At even higher ion doses 
the "island" regions between the cracks began to 
flake off, leaving copious debris on the glass sur- 
face. It is apparent that  the zero effective tough- 
ness condition alluded to in our earlier discussion 
of Equation 4 has been attained in the proton 
irradiation experiments. 

We are now in a position to correlate the 
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Figure 3 Optical micrograph of sodaqime glass surface 
irradiated with 480 kV protons at dose 2 X 1020 ions m -2. 
(Lower region was masked from incident beam.) "Mud- 
flat" pattern is due to intersection of spontaneously 
propagated, shallow surface cracks. 

experimental data in Fig. 2 with the indentation 
theory of  Section 2. Taking note of  Eernisse's 
observation that surface stress, as, increases 
linearly with radiation dose, D, in the sub- 
saturation region, we may conveniently write 

DID e = 2t~osdl/2/Ke (6) 

so that Equation 5 transforms to 

C/Co = 1 / ( 1 - - D / D e )  z/3 (7) 

Note that  e = Co at D = 0, as required; also that 
c ~  oo at D = D e ,  so D e is the critical dose for 

spontaneous cracking. Taking Co = 63/~m and 
D e = 2 . 5  •  -2, we generate from 
Equation 7 the solid curve shown in Fig. 2. This 
curve passes through the data points up to the 
dose level at which surface crazing first becomes 
apparent. Using ~ = 1 (see Appendix),  K e = 
0 .75MPam 1/2 for soda-lime glass [17], we may 

evalute Equation 6 at D = D  e to obtain Os d l / 2 =  
0 .38MPam 1/2 at the saturation point. For 
d = 5 / l m  this yields a s = 168MPa, which is in 
the strength range of as-received glass surfaces 
(typically 100 to 200MPa [18, 19]). In terms of  
an equivalent surface line force, we have as d = 
8 4 0 N m  -1, to be compared with Eernisse's value 
of  500 N m  -a . 

4. Discussion 
We have developed a formulation for evaluating 
surface layer stresses from indentation crack 
measurements. The method is simple in principle, 
requiring only access to a standard hardness testing 
facility. By means of  our illustrative case study on 

proton-irradiated glass, we have been able to 
demonstrate the capacity of  the method for pre- 
dicting quantitative trends, if not accurate 
absolute values. En route to this experimental 

confirmation of  the fracture mechanics equations 
we have found an explanation for the limiting 
stress capacity of  ion-bombarded surfaces, namely 
surface crazing, which could have some bearing 
on the erosion and wear properties of  ion- 
implanted materials [20]. We have also established 
a stress intensity factor formalism, via Equations 
1 and 2, suitable for analysing the role of  residual 
stress effects (associated with both  flaw gener- 
ation and surface stress state) in the determination 
of  strength characteristics [21]. This latter is an 
area which we shall explore in greater detail else- 
where, particularly in relation to machining 
damage in ceramics [22]. 

In proposing the indentat ion technique as a 
surface stress probe, we need to point out some 
of  the potential experimental complications that 
might arise. First and foremost, the material sys- 
tem under investigation must be "well-behaved" 
insofar as the indentation fracture pattern is con- 
cerned. Specimens with insufficiently smooth sur- 
faces or with coarse microstructures (relative to 
the scale of the indentation itself) may not pro- 
duce measurable radial crack traces [8]. Choice of  
indentation load is also important:  the load should 
not be too small that the radial traces remain too 
close to the elastic/plastic zone (typically, the 
radial tips should extend at least twice the distance 
from the contact centre as the corner of  the hard- 
ness impression, in order that Equation 1 remain 
valid); nor should it be too large that chipping 
occurs due to excessive growth of  lateral cracks 
(possibly enhanced by any tendency for the sur- 
face stressing process to cause delamination of  
the type mentioned in Section 3). Again, since our 
theoretical model is based on the concept of 
equilibrium fracture some effort should strictly 
be made to exclude from the test environment 
any "reactive" chemical species, most notably 
water, which can promote subcritical extension 
in the post-indentation configuration [8]. The 
simplest practical way of  achieving an effective 
inert environment is to direct a stream of dry 
nitrogen gas onto the specimen surface throughout 
the entire indentation test procedure, measuring 
the crack traces as soon as possible (preferably 
within 1 rain) after completion of  the contact 
cycle. 
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It is also important that we should not lose 
sight of  the assumptions made in constructing 
the theoretical model. We have mentioned that the 
introduction of  a surface stress layer will tend to 
distort the penny-like geometry of  the radial 
cracks, particularly when the intensity of stress 
is high and the layer is thin. Under such circum- 
stances we may expect the subsurface crack 
regions to constrain the expansion or contraction 
of  the radial traces, thereby leading to under- 
estimates in the stress evaluations. However, the 
fact that our estimates for ion-irradiated glass were 
actually in excess o f  those by Eernisse in com- 
parable experiments suggests that the constraining 
effect may not be great. Again, Equation 2 is 
derived in the approximation d ~ c, and there may 
be instances were this proviso breaks down. If so, 
Equation 2 needs to be replaced by a more general 
formula; this generalization must incorporate a 
crack-size dependence, since at d = c the stress 
intensity factor must reduce to the familiar sol- 
ution for uniformly stressed cracks, K s cc %c 1/2. 
Reference is made to the Appendix for the deri- 
vation of  such a formula, which can be used to 
obtain a modified (somewhat more complicated) 
equivalent of  Equation 5 for stress evaluation. A 
further possible complication is that the stress 
field is not uniform within the surface layer, but 
rather exhibits a gradient with depth. The necess- 
ary formalism for accommodating this effect is 
also included in the Appendix. What our existing 
expressions give us, of  course, is the average stress 
over the surface layer. 

Finally, in using indentation crack size to 
monitor trends in surface stress behaviour, as we 
have done in Fig. 2, it is as well to appreciate that 
d, as well as as, may vary with time. With the 
proton-irradiated glass considered here the pene- 
tration depth is fixed by the incident energy of  
the ions, so the crack size uniquely reflects the 
magnitude of the surface stress. In processes such 
as chemical tempering by ion exchange in molten 
salts, however, the depth profile changes signifi- 
cantly with duration of  treatment [23]. Clearly 
in such cases an independent experiment would 
be required to separate out the relative contri- 
butions from the es and d variations to the crack- 
size dependence in Equation 5. 

Acknowledgements 
The results discussed in Section 3 were obtained 
by T. Jensen as part of  an honours thesis program 

at the School of  Physics, The University of  New 
South Wales. Funding for the remainder of  this 
work was provided by the U.S. Office of  Naval 
Research, Metallurgy and Ceramics Program. 

Appendix 
Here we give details of  the calculation from which 
Equation 2 derives. Our starting point is the sol- 
ution for the stress intensity factor at the 
periphery,of an embedded penny crack of  radius c 
acted upon by an internal, concentrated point 
force. The specific configuration we shall consider 
is shown in Fig. A1. Writing es(X,y ) dx dy as the 
point force, we seek an integrated solution over 
the shaded strip areas defined by width d and 
depth b to obtain the stress intensity factor K s 
at the symmetry point S. Then for b = 0, this 
integrated solution may be taken as representative 
of  the ha l f -penny  radial crack system of Fig. 1, 
provided due allowance is made for free-surface 
and crack interaction (radial-radial and radial-  
lateral) effects. 

Accordingly, our incremental stress intensity 
factor, from [9], is 

dKs(x, y )  = [COs(X ' y)/2rrc,/2] {(c 2 _ x 2 _y2 )1 /2 /  

[(c - -x )  2 +y21} dx dy (A1) 

where ~ is a dimensionless term which incorpor-~ 
ares the necessary free-surface and crack-interaction 
corrections. This ~ term is here defined to be 
consistent with familiar limiting Solutions (see 

---X 

Figure A1 Embedded penny crack subjected to stresses 
over mirror-symmetric strip areas (shaded). Stress inten- 
sity factor solution is equivalent to that for half-penny 
configuration with surface trace SS', provided free-surface 
and crack-interaction correction factors are included. 
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Equation A12, below); for indentation systems it 
should not differ too greatly from the exact value 
2/7r 1/2 for the embedded penny crack of  Fig. A1 
[9]. The requisite integral over the shaded areas 
of  Fig. 1 is 

+(e 2_y2)]/2 
K s = 2 "Jb b+a ( dKs(x ,y  ) (A2) 

-'_(c=_y=) ~n 

(Here the factor 2 is to take care of  the mirror 
symmetry about the x axis.) For the special case 
% = const., Equations A1 and A2 combine to give 

1/2 t'b+d 
Ks = (g/~ )Jb L (y )  dy (A3) 

where we define the integral 

( +(c2-yz) in 

L ( y )  = ~-(c~-, ')  ''2 {(c ~ - - x  ~ - - 9 ) ' ~ /  

[(c - -x)  2 + y2]} dx (14) 

To solve Equation A4 we consider the following 
contour integral [24]: 

I = @C {(C2 --Z2 --y2)1/2/[(C - Z ) 2  @72]} dz 

(A5) 

where z is a vector in complex space. The inte- 
grand in Equation A5 has a branch cut between 
the branch points z = + (c 2 _y2)1/2, so we choose 

the contour C = C o + C 1 + C 2 + C 3 + 6 " 4 + C s  
shown in Fig. A2. Evaluations over each segment 
of the contour give 

j ;  = 0  (A6a) 
0 

�9 j- 
|, = = - - L  (A6b) 
d C~ C s 

fc2 = --J'c~ (A6c) 

( = --2~T (A6d) ,d Ca 

(The minus sign in Equation A6b arises from 
proper consideration of the phase of  the integrand 
above and below the branch cut [24].) Hence the 
integrals in Equations A4 and A5 are related accor- 
ding to 

I = - -2 (L  + 7r) (A7) 

Now by the residue theorem [24] the integral I is 
also given by 2ai times the sum of  the residues at 
the poles. The integrand in Equation A5 has simple 
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Figure A 2  Contour in complex space for evaluating inte- 
g r a i l  The function to be integrated has branch cut (heavy 
line) between z = + @ 2 _ y 2 ) l n  and simple poles at 
z = e + iy (heavy dots). The contour C is subdivided into 
circular segments C O and C3, linear segments C~ and C s 
adjacent to the branch cut, and linear segments C2 and 
C 4 to complete the circuit. 

poles at z = c -+ iy. Computation of  the residues 
for these poles leads to the result 

I = - 2 ~ ( c / y )  " 2  ( 1 8 )  

Combining Equations 17 and A8, we obtain 

L(y )  = rr[(c/y) ' / 2 -  1] (A9) 

On substituting Equation A9 back into Equation 
A3 and completing the remaining straightforward 
integration, we get 

K s = COs cl/2 [2(b/c + d/c) 1/2 _ 2(b/c)1, 2 _ d/c] 

(A10) 

For a stress layer located at the surface our sol- 
ution reduces to 

Ks(b = 0) = ~osdl/212 -- (d/c)1/21 ( A l l )  

Note that for a strip which extends to the depth 
of  the crack Equation A11 in turn reduces to 

Ks(b = 0 ,  d = c ) =  ~Os cl/2 (A12) 

which is the familiar result for a uniform stress 
field. It is this last expression which provides us 
with a reference base for defining and calibrating 
a convenient crack geometry factor for our half- 
penny radial crack system. Thus, actual strength 
measurements of  glass specimens containing 
Vickers indentations [25, 26] can be shown to be 



consistent with a value unity for ff (to within an 
experimental uncertainty of about + 10%; cf. the 
value 2/771/2 for ideal embedded pennies). The 
particular solution of interest here is the limiting 
case of Equation A11 for thin layers, 

Ks(b = O , d ~ c )  = 2~asd w2 (A13) 

corresponding to Equation 2 in the main text. 
We may note in passing that the general solution 

for non-uniform depth profiles could be derived in 
much the same way as above, but incorporating 
as(y ) within the integral of Equation 13; i.e. in 
conjunction with Equation 19,  

1/2  - b + d  
K s = (~/c )Jb [(c/Y)W2--1]Os(y)dy 

(114)  
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